40 research outputs found

    Signal Processing Techniques and Concept of Operations for Polarimetric Rotating Phased Array Radar

    Get PDF
    The Weather Surveillance Radar 1988 Doppler (WSR-88D) network has been operational for over 30 years and is still the primary observational instrument employed by the National Weather Service (NWS) forecasters to support their critical mission of issuing severe weather warnings and forecasts in the United States. Nevertheless, the WSR-88Ds have exceeded their engineering design lifespan and are projected to reach the end of operational lifetime by 2040. Technological limitations may prevent the WSR-88D to meet demanding functional requirements for future observational needs. The National Oceanic and Atmospheric Administration (NOAA) has started considering radar systems with advanced capabilities for the eventual replacement of the WSR-88D. Unique and flexible capabilities offered by Phased Array Radar (PAR) technology support the required enhanced weather surveillance strategies that are envisioned to improve the weather radar products, making PAR technology an attractive candidate for the next generation of weather radars. If PAR technology is to replace the operational WSR-88D, important decisions must be made regarding the architecture that will be needed to meet the functional requirements. A four-faced planar PAR (4F-PAR) is expected to achieve the requirements set forth by NOAA and the NWS, but deploying and maintaining an operational network of these radars across the U.S. will likely be unaffordable. A more affordable alternative radar system is based on a single-face Rotating PAR (RPAR) architecture, which is capable of exceeding the functionality provided by the WSR-88D network. This dissertation is focused on exploring advanced RPAR scanning techniques in support of meeting future radar functional requirements. A survey of unique RPAR capabilities is conducted to determine which ones could be exploited under an RPAR Concept of Operations (CONOPS). Three capabilities are selected for further investigation: beam agility, digital beamforming, and dwell flexibility. The RPARs beam agility is exploited to minimize the beam smearing that results from the rotation of the antenna system over the collection of samples in the coherent processing interval. The use of digital beamforming is investigated as a possible way to reduce the scan time and/or the variance of estimates. The RPAR's dwell flexibility capability is explored as a possible way to tailor the scan to meteorological observations with the goal of improving data quality. Three advanced RPAR scanning techniques are developed exploiting these capabilities, and their performance in support of meeting the radar functional requirements is quantified. The proposed techniques are implemented on the Advanced Technology Demonstrator (ATD), a dual-polarization RPAR system at the National Severe Storms Laboratory (NSSL) in Norman, OK. Data collection experiments are conducted with the ATD to demonstrate the performance of the proposed techniques for dual-polarization observations. Results are verified by quantitatively comparing fields of radar-variable estimates produced using the proposed RPAR techniques with those produced by a well-known collocated WSR-88D radar simultaneously collecting data following an operational Volume Coverage Pattern (VCP). The techniques introduced are integrated to operate simultaneously, and used to design an RPAR CONOPS that can complete a full volume scan in about one minute, while achieving other demanding functional requirements. It is expected that the findings in this dissertation will provide valuable information that can support the design of the future U.S. weather surveillance radar network

    Low-complexity methods to mitigate the impact of environmental variables on low-cost UAS-based atmospheric carbon dioxide measurements

    Get PDF
    This article assesses the individual and joint impact of pressure, temperature, and relative humidity on the accuracy of atmospheric CO2 measurements collected by unmanned aerial systems (UASs) using low-cost commercial non-dispersive infrared (NDIR) sensors. We build upon previous experimental results in the literature and present a new dataset with increased gradients for each environmental variable to match the abrupt changes found in UAS-based atmospheric vertical profiles. As a key contribution, we present a low-complexity correction procedure to mitigate the impact of these variables and reduce errors in this type of atmospheric CO2 measurement. Our findings support the use of low-cost NDIR sensors for UAS-based atmospheric CO2 measurements as a complementary in situ tool for many scientific applications.</p

    Integrated Genomic and Gene Expression Profiling Identifies Two Major Genomic Circuits in Urothelial Carcinoma

    Get PDF
    Similar to other malignancies, urothelial carcinoma (UC) is characterized by specific recurrent chromosomal aberrations and gene mutations. However, the interconnection between specific genomic alterations, and how patterns of chromosomal alterations adhere to different molecular subgroups of UC, is less clear. We applied tiling resolution array CGH to 146 cases of UC and identified a number of regions harboring recurrent focal genomic amplifications and deletions. Several potential oncogenes were included in the amplified regions, including known oncogenes like E2F3, CCND1, and CCNE1, as well as new candidate genes, such as SETDB1 (1q21), and BCL2L1 (20q11). We next combined genome profiling with global gene expression, gene mutation, and protein expression data and identified two major genomic circuits operating in urothelial carcinoma. The first circuit was characterized by FGFR3 alterations, overexpression of CCND1, and 9q and CDKN2A deletions. The second circuit was defined by E3F3 amplifications and RB1 deletions, as well as gains of 5p, deletions at PTEN and 2q36, 16q, 20q, and elevated CDKN2A levels. TP53/MDM2 alterations were common for advanced tumors within the two circuits. Our data also suggest a possible RAS/RAF circuit. The tumors with worst prognosis showed a gene expression profile that indicated a keratinized phenotype. Taken together, our integrative approach revealed at least two separate networks of genomic alterations linked to the molecular diversity seen in UC, and that these circuits may reflect distinct pathways of tumor development

    Assessment of acute myocardial infarction: current status and recommendations from the North American society for cardiovascular imaging and the European society of cardiac radiology

    Get PDF
    There are a number of imaging tests that are used in the setting of acute myocardial infarction and acute coronary syndrome. Each has their strengths and limitations. Experts from the European Society of Cardiac Radiology and the North American Society for Cardiovascular Imaging together with other prominent imagers reviewed the literature. It is clear that there is a definite role for imaging in these patients. While comparative accuracy, convenience and cost have largely guided test decisions in the past, the introduction of newer tests is being held to a higher standard which compares patient outcomes. Multicenter randomized comparative effectiveness trials with outcome measures are required

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Premature termination of DNA replication in plasmids carrying two inversely oriented ColE1 origins

    No full text
    8 p.-4 fig.In Escherichia coli plasmids carrying two inversely oriented ColE1 origins, DNA replication initiates at only one of the two potential origins. The other silent origin acts as a replication fork barrier. Whether this barrier is permanent or simply a pausing site remains unknown. Here, we used a repeated primer extension assay to map in vivo, at the nucleotide level, the 5' end of the nascent strand where initiation and blockage of replication forks occurs. Initiation occurred primarily at the previously defined origin, however, an alternative initiation site was detected 17 bp upstream. At the barrier, the lagging strand also terminated at the main initiation site. Therefore, the 5' end of the nascent strand at the barrier was identical to that generated during initiation. This observation strongly suggests that blockage of the replication fork at the silent origin is not just a pausing site but permanent, and leads to a premature termination event.This work was partially supported by grants 96/0470 and 99/0850 from the Spanish Fondo de Investigación Sanitaria, grant 08.6/0016/1997 from the Comunidad Autónoma de Madrid and grant PM97-0138 from the Spanish Comisión Interministerial de Ciencia y Tecnología (CICYT)Peer reviewe

    Cloning, sequencing and expression in MEL cells of a cDNA encoding the mouse ribosomal protein S5

    Get PDF
    4 p.-5 fig.We describe the isolation and characterization of a cDNA encoding the mouse S5 ribosomal protein. It was isolated from a MEL (murine erythroleukemia) cell cDNA library by differential hybridization as a down regulated sequence during HMBA-induced differentiation. Northern series analysis showed that S5 mRNA expression is reduced 5-fold throughout the differentiation process. The mouse S5 mRNA is 760 bp long and encodes for a 204 amino acid protein with 94% homology with the human and rat S5.This work was partially supported by Grant 96r0470 from the Spanish Fondo de Investigación Sanitaria, and Grant PM95-0016 from the CICYTPeer reviewe

    Guided Growth of Horizontal GaN Nanowires on Quartz and Their Transfer to Other Substrates

    No full text
    The guided growth of horizontal nanowires has so far been demonstrated on a limited number of substrates. In most cases, the nanowires are covalently bonded to the substrate where they grow and cannot be transferred to other substrates. Here we demonstrate the guided growth of well-aligned horizontal GaN nanowires on quartz and their subsequent transfer to silicon wafers by selective etching of the quartz while maintaining their alignment. The guided growth was observed on different planes of quartz with varying degrees of alignment. We characterized the crystallographic orientations of the nanowires and proposed a new mechanism of “dynamic graphoepitaxy” for their guided growth on quartz. The transfer of the guided nanowires enabled the fabrication of back-gated field-effect transistors from aligned nanowire arrays on oxidized silicon wafers and the production of crossbar arrays. The guided growth of transferrable nanowires opens up the possibility of massively parallel integration of nanowires into functional systems on virtually any desired substrate
    corecore